Refrigerants — the next-generation debate

Daikin, R32, refrigerants, maintenance, refurbishment
The global-warming issue is a key driver in choosing refrigerants for the future.

With the expected phase out of HCFC refrigerants, designers, contractors and building managers installing air-conditioning systems must be aware of the issues surrounding the likely replacements, says Graham Wright of Daikin UK.

The use of HFC refrigerants in air-conditioning systems is a hugely complex issue. There is much debate on which gas will be most widely adopted as the next-generation refrigerant for air conditioning, heat-pump and chiller systems, in the hope of maximising energy efficiencies and mitigating future global-warming impact.

The likely candidates are R32 (difluoromethane, CH2F2), propane (R290), CO2 (R744), and HFO blends — each with its own advantages and disadvantages. It is vital to assess the use of refrigerants based on five key factors.

• Ozone-depletion potential

• Global-warming potential

• Natural-resource efficiency

• Affordability, especially vital in developing countries

• Safety

Ozone-depletion potential must be zero. This is a given (due to the global Montreal Protocol agreements and EU ozone-depleting regulations) and requires no further justification.

However, global-warming potential (GWP) is slightly more complicated. GWP must be considered from the perspective of entire life-cycle climate performance (LCCP), as follows.

• The total energy used over the life of one air-conditioning or heat-pump unit is converted to its global-warming equivalent (indirect emissions).

• The global-warming equivalent of the direct refrigerant emissions is added to the emissions associated with energy consumption.

This method gives a much more accurate evaluation of the true global warming impact of a unit throughout its life cycle.

Only looking to the GWP value is, therefore, not the correct way to assess refrigerant options, as a unit with a ‘medium’ GWP may have a lower total impact than a unit using a ‘low’ GWP refrigerant.

As it is predicted that 75% of future HFC emissions will originate from developing countries, it is important to find solutions that are affordable on a global scale. It is also vital to be efficient with natural resources, and the environmental and economic parameter to ‘do more with fewer materials’ should be adhered to.

As such, refrigerant options must be assessed on their potential for reuse. For example, a single-component refrigerant such as R32 has an advantage. This same rule applies to the assessment of raw materials used to manufacture equipment. So, even when low-efficiency refrigerant options could be improved by using more refrigerant in larger systems, this would be detrimental to the total ecodesign balance.

It goes without saying that safety is paramount. The ASHRAE 34 -2010, ISO 817 and EN378 standards on the designation and safety classification of refrigerants indicate that R32 can be applied safely in a wide range of applications. However, the thinking on safety varies considerably. Dismissing a refrigerant as ‘dangerous’ without a more accurate risk analysis and serious consideration of the other issues, can, and will, limit the potential of air conditioning to become a genuinely sustainable industry.

Many factors affect safety — including product type, volume of refrigerant charge, room size, and capacity of switch type in the room. Furthermore, the type of electrical capacity used in domestic switches does not usually cause ignition.

It is also important to understand the scale of the risk. With R32, for example, even when performing soldering work, a flame will blow out naturally and not continue to burn because the flow of leaking refrigerant is faster than the speed that transmits combustion. Tests carried out by Daikin Industries Limited and Suwa Tokyo University of Science (Experimental safety evaluation on flammability of R32 refrigerant, Yajima R et al, ICR 2011), show that even if combustion of R32 occurs, it is not explosive and the possibility of fire spreading is extremely low.

While each of these points is important, it is also crucial that they are not focused on exclusively, without giving due weight to the issue of energy efficiency. Without the highest possible levels of energy efficiency, future systems will require more natural resources to power them and will emit more carbon than is necessary — clearly a detrimental step in meeting the UK’s tough carbon-reduction targets.

The definition of energy efficiency needs to include, not just the seasonal efficiency averaged over the cooling or heating season, but also the efficiency in peak-load conditions (on very hot or very cold days).

Seasonal efficiency is important to reach the energy-efficiency goals set by various EU directives (Ecodesign, Energy Efficiency Directive, EPBD, Renewable Energy Source Directive), whereas peak-load efficiency is important to avoid the requirement for extra power plants.

It is clear that deciding on a new refrigerant will be difficult, and debate is likely to continue for some time to come. The need to take up this challenge stems from the refrigerant industry’s responsibility to protect the global environment and a drive for sustainable growth of the air-conditioning and heat-pump market.

Graham Wright is legislation specialist at Daikin Airconditioning (UK).

Related links:
Related articles:

modbs tv logo

The electric economy

Universities drive down carbon emissions

Kevin Pocock of Mitsubishi Electric discusses the drivers for universities to achieve zero carbon in their built environment – and the challenges.

  • Calendar Icon
    11 November, 2020, 10:00 - 12 November, 2020, 16:00
  • Calendar Icon
    20 November, 2020, 19:00 - 23:59
    CSA Awards