Heating control — a work in progress

Hoval, cascade, commissioning, boiler, space heating

Selecting energy-efficient boiler plant is just the first step in efficiency. How it is controlled through its life is just as important. Kevin Stones of Hoval illustrates this principle with reference to heating systems served by cascade boiler installations.

When a heating system is being designed, one of the primary considerations is clearly to source heating plant that is inherently efficient. The selection process should also take account of operational parameters such as variable heating loads, ensuring the plant is able to adapt efficiently to the changing demands for space heating and domestic hot water from the building(s).

Indeed, this latter consideration has become even more important in recent years as new buildings have become more thermally efficient and many existing buildings have been refurbished to improve their thermal performance. This leads to setpoint temperatures being achieved more quickly, so that the heating plant is operating under part-load conditions for longer periods of time.

A tried-and-tested approach to managing variable heat loads has been to use a cascade arrangement of modular boilers, each of which can modulate. For example, if there are several boilers in a cascade and each can turn down to 20% of full load, the result is a highly adaptable and responsive system. Clearly, the effectiveness of the control of the system is paramount in delivering maximum performance and energy-saving benefits.

A further benefit of cascade systems is that they can be supplied as a kit complete with wall-hung boilers, low temperature hot water (LTHW) and gas pipework header(s), inter-connecting flexible LTHW and gas pipework, pumps and valves. Not only does this make installation easier but it also uses less space in the plant room.

In recent years there has been a tendency to include low-carbon heat sources alongside oil- or gas-fired condensing modular boilers, such as biomass boilers, heat pumps or solar thermal. Where different heat sources are mixed in this way, the control aspects become even more important.

A key purpose of the control strategy in a cascade system is to ensure the design temperature differential (ΔT) between flow and return water temperatures is maintained. If not, the boilers will switch on and off (cycle) far too frequently so that energy is wasted, emissions increase and the life of the plant is reduced.

To maintain the design ΔT the boilers should come on at low-fire initially or modulate to meet the heat load — depending on the type of burner being used.

Many building operators are keen to make wider use of renewable heat sources in the design of their heating systems to support their own sustainability programmes, as well as compliance with planning regulations. Of the various renewable heating technologies available, the most popular and cost-effective choice in the UK is proving to be use of cascade systems that use biomass boilers to meet base heat loads and which are supplemented by gas-fired boilers.

In these cascade configurations, the biomass boiler is the lead boiler, and it is essential the control strategy recognises that biomass boilers are not designed for rapid on/off firing. They require some time to stabilise, so the control parameters need to allow sufficient tolerances for the biomass boiler to meet the setpoint temperature. A buffer vessel should be specified to be fitted between the biomass boiler and the heating system to ensure optimum boiler run times are achieved.

Hoval, cascade, commissioning, boiler, space heating
Cascade boiler systems can be very responsive to variable loads, but only if they are well controlled.

Also, bringing in gas-fired back-up boilers too quickly may cause the biomass boiler to switch off, so that the full heat load is then being met by the gas-fired boilers.

When the system is first installed, correct commissioning will ensure that the controls enhance the inherent efficiency of the heating plant and the design of the distribution system. Over time, though, building usage will almost certainly change, and if efficiency is to be maintained the control strategy must adapt.

For example, a system that is first commissioned to meet the heat loads of a new shell-and-core building should be re-commissioned in line with changes to heat loads as tenants move in.

In older buildings similar challenges apply as work patterns and occupancy change or improvements are made to the thermal performance of the building fabric. Routine maintenance should therefore include regular assessment of the control configuration.

This is facilitated by the use of remote monitoring, which can be easily implemented for both gas or oil-fired and biomass boilers. This would also be beneficial for those maintenance service providers that have guaranteed the energy performance of the plant they maintain.

Consequently, it is very rare that a control strategy can be ‘cast in stone’ and continue to ensure efficient performance that is aligned to the heating requirements of the building. Rather, it makes more sense to think of a control strategy as ‘work in progress’ that continues to evolve through the life of the building.

Kevin Stones is engineering and service director with Hoval Ltd.

Related links:
Related articles:



modbs tv logo

Johnson Controls’ expansion of Izmir plant shortens delivery times, triples production capacity for commercial heat pumps

Johnson Controls has announced the expansion of production capacity at its plant in Izmir, Turkey. 

Elta invests over £650k in new machinery as it eyes growth in production

Continuing its expansion and growth strategy, Elta has invested in two new machines to streamline and improve its manufacturing capabilities. This comes on the back of the air movement specialist’s 50th anniversary.